Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multichannel Carrier Scattering at Quantum-Well Heterostructures

Identifieur interne : 000748 ( Russie/Analysis ); précédent : 000747; suivant : 000749

Multichannel Carrier Scattering at Quantum-Well Heterostructures

Auteurs : RBID : Pascal:02-0223057

Descripteurs français

English descriptors

Abstract

An efficient combined numerical-analytical technique is developed for calculating states of the continuum spectrum in systems with quantum wells (QWs) with an arbitrary potential shape, described by a system of coupled Schrodinger equations, e.g., hole states in semiconductor QWs. Continuum-spectrum states are found exactly using the approach similar to the scattering theory. Scattering states (the in/out-solutions) and the S-matrix for the case of multichannel scattering in one-dimensional systems with QWs are constructed, and their symmetry is determined and analyzed. The method is applied to studying the hole scattering by GaInAs-InGaAsP QWs with strained layers. The hole transmission and reflection coefficients and the delay-time energy dependence are calculated in relation to parameters of the structures and values of the transversal momentum components. In the energy range in which the channel with heavy hole conversion into a propagating light hole is closed, scattering of the heavy hole on a QW has a resonant nature. © 2002 MAIK Nauka / Interperiodica .

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0223057

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Multichannel Carrier Scattering at Quantum-Well Heterostructures</title>
<author>
<name sortKey="Galiev, V I" uniqKey="Galiev V">V. I. Galiev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 101999 Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow</wicri:regionArea>
<wicri:noRegion>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 101999 Russia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kruglov, A N" uniqKey="Kruglov A">A. N. Kruglov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 101999 Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow</wicri:regionArea>
<wicri:noRegion>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 101999 Russia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polupanov, A F" uniqKey="Polupanov A">A. F. Polupanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 101999 Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow</wicri:regionArea>
<wicri:noRegion>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 101999 Russia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldys, E M" uniqKey="Goldys E">E. M. Goldys</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Science and Technology Laboratories, Masquarie University, North Ryde 2109 NSW, Australia</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Semiconductor Science and Technology Laboratories, Masquarie University, North Ryde 2109 NSW</wicri:regionArea>
<wicri:noRegion>North Ryde 2109 NSW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tansley, T L" uniqKey="Tansley T">T. L. Tansley</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Science and Technology Laboratories, Masquarie University, North Ryde 2109 NSW, Australia</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Semiconductor Science and Technology Laboratories, Masquarie University, North Ryde 2109 NSW</wicri:regionArea>
<wicri:noRegion>North Ryde 2109 NSW</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0223057</idno>
<date when="2002-05">2002-05</date>
<idno type="stanalyst">PASCAL 02-0223057 AIP</idno>
<idno type="RBID">Pascal:02-0223057</idno>
<idno type="wicri:Area/Main/Corpus">00F634</idno>
<idno type="wicri:Area/Main/Repository">00E258</idno>
<idno type="wicri:Area/Russie/Extraction">000748</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1063-7826</idno>
<title level="j" type="abbreviated">Semiconductors</title>
<title level="j" type="main">Semiconductors</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computerized simulation</term>
<term>Gallium arsenides</term>
<term>Indium compounds</term>
<term>Reflection</term>
<term>Scattering</term>
<term>Schroedinger equation</term>
<term>Semiconductor heterojunctions</term>
<term>Semiconductor quantum wells</term>
<term>Theoretical study</term>
<term>Transmission</term>
<term>Transport processes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7363H</term>
<term>7340K</term>
<term>Etude théorique</term>
<term>Simulation ordinateur</term>
<term>Hétérojonction semiconducteur</term>
<term>Gallium arséniure</term>
<term>Indium composé</term>
<term>Puits quantique semiconducteur</term>
<term>Diffusion</term>
<term>Equation Schrödinger</term>
<term>Transmission</term>
<term>Phénomène transport</term>
<term>Réflexion</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An efficient combined numerical-analytical technique is developed for calculating states of the continuum spectrum in systems with quantum wells (QWs) with an arbitrary potential shape, described by a system of coupled Schrodinger equations, e.g., hole states in semiconductor QWs. Continuum-spectrum states are found exactly using the approach similar to the scattering theory. Scattering states (the in/out-solutions) and the S-matrix for the case of multichannel scattering in one-dimensional systems with QWs are constructed, and their symmetry is determined and analyzed. The method is applied to studying the hole scattering by GaInAs-InGaAsP QWs with strained layers. The hole transmission and reflection coefficients and the delay-time energy dependence are calculated in relation to parameters of the structures and values of the transversal momentum components. In the energy range in which the channel with heavy hole conversion into a propagating light hole is closed, scattering of the heavy hole on a QW has a resonant nature. © 2002 MAIK Nauka / Interperiodica .</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1063-7826</s0>
</fA01>
<fA02 i1="01">
<s0>SMICES</s0>
</fA02>
<fA03 i2="1">
<s0>Semiconductors</s0>
</fA03>
<fA05>
<s2>36</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Multichannel Carrier Scattering at Quantum-Well Heterostructures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GALIEV (V. I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KRUGLOV (A. N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>POLUPANOV (A. F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GOLDYS (E. M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TANSLEY (T. L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Radio-Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 101999 Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Semiconductor Science and Technology Laboratories, Masquarie University, North Ryde 2109 NSW, Australia</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>546-551</s1>
</fA20>
<fA21>
<s1>2002-05</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12492</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0223057</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductors</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>An efficient combined numerical-analytical technique is developed for calculating states of the continuum spectrum in systems with quantum wells (QWs) with an arbitrary potential shape, described by a system of coupled Schrodinger equations, e.g., hole states in semiconductor QWs. Continuum-spectrum states are found exactly using the approach similar to the scattering theory. Scattering states (the in/out-solutions) and the S-matrix for the case of multichannel scattering in one-dimensional systems with QWs are constructed, and their symmetry is determined and analyzed. The method is applied to studying the hole scattering by GaInAs-InGaAsP QWs with strained layers. The hole transmission and reflection coefficients and the delay-time energy dependence are calculated in relation to parameters of the structures and values of the transversal momentum components. In the energy range in which the channel with heavy hole conversion into a propagating light hole is closed, scattering of the heavy hole on a QW has a resonant nature. © 2002 MAIK Nauka / Interperiodica .</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7363H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7340K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Simulation ordinateur</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Computerized simulation</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffusion</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Scattering</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Equation Schrödinger</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Schroedinger equation</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Transmission</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Transmission</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Phénomène transport</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Transport processes</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Réflexion</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Reflection</s0>
</fC03>
<fN21>
<s1>126</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0218M000812</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000748 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000748 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:02-0223057
   |texte=   Multichannel Carrier Scattering at Quantum-Well Heterostructures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024